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Abstract. At the CAiSE conference in Heidelberg in 1999, Wasim Sadiq
and Maria Orlowska presented an algorithm to verify workflow graphs [19].
The algorithm uses a set of reduction rules to detect structural conflicts.
This paper shows that the set of reduction rules presented in [19] is not
complete and proposes an alternative algorithm. The algorithm trans-
lates workflow graphs into so-called WF-nets. WF-nets are a class of
Petri nets tailored towards workflow analysis. As a result, Petri-net the-
ory and tools can be used to verify workflow graphs. In particular, our
workflow verification tool Woflan [21] can be used to detect design er-
rors. It is shown that the absence of structural conflicts, i.e., deadlocks
and lack of synchronization, conforms to soundness of the corresponding
WF-net [2]. In contrast to the algorithm presented in [19], the algorithm
presented in this paper is complete. Moreover, the complexity of this
alternative algorithm is given.

1 Introduction

Business processes can be formally defined by process models that need to be
correct in order to not directly affect business objectives negatively. Proper def-
inition, analysis, verification, and refinement of these models is indispensable
before enacting the process model using a workflow management system. There
are several aspects of a process model including process structure, data flow,
roles, application interface, temporal constraints, and others. The techniques
used in this paper, i.e., workflow graphs [19,20] and workflow nets [2], focus on
the process structure. The structure of a workflow defines the way of execution,
scheduling, and coordination of workflow tasks.

Various approaches to workflow modeling can be found in literature
[2,4,7,9,12,13,16,18,19]. Most workflow management systems use a proprietary
workflow language. Despite the standardization efforts of the Workflow Man-
agement Coalition [13] a “lingua franca” is still missing. The specification of
Interface 1/WPDL is ambiguous (no formal semantics is given) and its expres-
sive power is limited. Moreover, the languages of many existing tools and In-
terface 1/WPDL do not provide starting point for workflow analysis. Therefore,
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techniques such as workflow graphs [19,20] and workflow nets [2] have been pro-
posed. Workflow nets are based on Petri nets and the application of these nets
has been explored by many authors [1,7]. Workflow graphs have been introduced
by Wasim Sadiq and Maria Orlowska as a more direct way of modeling workflow
processes [19,20].

The design of large workflow specifications can result in hidden errors, which
may lead to undesirable execution of some or all possible instances of a work-
flow. These problems should be corrected during the design phase rather than
after deploying the workflow application. Only limited work in literature covers
workflow verification. Some issues of workflow structure verification have been
examined in [9] together with complexity evaluations. In [18] the issue of cor-
rectness in workflow modeling has been identified.

This paper shows that the set of reduction rules for the detection of structural
conflicts presented by Wasim Sadiq and Maria Orlowska in [19] is not complete.
Instead an alternative algorithm is presented that translates workflow graphs
into workflow nets. Workflow nets are a subclass of Petri nets tailored toward
workflow analysis [2]. Through this translation it is possible to verify workflow
graphs using Petri-net-based analysis tools such as Woflan [21]. In contrast to the
technique described in [19], the algorithm presented in this paper is complete.
Moreover, the computational complexity of our approach is at least as good as
other analysis techniques specifically tailored towards workflow graphs [14].

In this paper we first present the definition of a workflow graph together
with its consistency and correctness criteria. A counter example showing that
the reduction rules in [19] are not complete and an alternative algorithm and its
complexity [14], are presented in Section 3. Section 4 defines Petri nets, work-
flow nets, and verification criteria. Section 5 outlines an algorithm for mapping
workflow graphs onto workflow nets. Woflan, a tool for analyzing workflow pro-
cess definitions specified in terms of Petri nets is described in Section 6. Section
7 draws the conclusion that the algorithm presented in this paper is complete,
efficient, and allows for more advanced constructs such as arbitrary cycles.

2 Workflow Graphs

Figure 1 shows process modeling objects that may be nodes or edges. The con-
trol flow relation links two nodes in a graph and shows the execution order.
A node can either be a task or a choice/merge coordinator. A task stands for
work required to reach an objective and is used to build forks and synchroniz-
ers. Choice/merge coordinators are represented by a circle. In a workflow graph
two nodes are linked together by a control flow relation represented by a di-
rected edge. It shows the execution order between start tasks and end tasks of a
workflow graph.

A sequence consists of a node that has an incoming and an outgoing arc.
A fork node allows independent execution between concurrent paths within

a workflow graph and is modeled by connecting two or more outgoing control
flow relations to a task.
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Fig. 1. Process modeling objects

A synchronizer node with more than one incoming control flow relation is
applied to synchronize such concurrent paths. A synchronizer waits until all
incoming control flow relations have lead into the task.

A choice node has two or more outgoing control flow relations resulting in
mutually exclusive alternative paths. This ensures that only one alternative out-
going control flow relation is selected at run-time.

A merge node is the counterpart of the choice node and has two or more
incoming control flow relations. It joins mutually exclusive alternative paths
into one path.

Definition 1 (Workflow graph). A workflow graph is a tuple WG = (N, T,
T S, T E, C, F ):

- N is a finite set of nodes,
- T ⊆ N is a finite set of tasks,
- T S ⊆ T is a finite set of start tasks,
- T E ⊆ T is a finite set of end tasks,
- C ⊆ N is a finite set of choice/merge coordinators,
- N = T ∪ C, and
- F ⊆ N × N is the control flow relation.

The relation F defines a directed graph with nodes N and arcs F . In this directed
graph, we can define the input nodes and the output nodes of a given node.
•x = {y ∈ N Fx} is the set of input nodes of x ∈ N and x• = {y ∈ N Fy} is
the set of output nodes of x.

Figure 2 shows a workflow graph in the left column. The nodes are repre-
sented by rectangles and circles where the first stand for tasks and the latter for
choice/merge coordinators. C1 and C2 are choice coordinators. C3 is a merge co-
ordinator. The start and end tasks of the workflow graph are marked as T1 and
T9 respectively. Control flow relations are modeled as arcs between the nodes.
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Fig. 2. A workflow graph (left) and its three instance subgraphs (right)

Task T2 serves as an input node for T4 while the latter task represents an output
node of T2.

Definition 2 allows for graphs which are unconnected, without start/end
tasks, tasks without any input and output, etc. Therefore we need to restrict
the definition to consistent workflow graphs.

Definition 2 (Consistent). A workflow graph WG = (N, T, T S, T E, C, F ) is
consistent if:

- for all t ∈ T : •t = ∅ if and only if t ∈ T S,
- for all t ∈ T : t• = ∅ if and only if t ∈ T E,
- (N, F ) is a directed acyclic graph, and
- every node is on a path from some start task to some end task, i.e., for all

n ∈ N : there is a ts ∈ T S and a te ∈ T E such that tsF ∗n and nF ∗te.

In the remainder we only consider consistent workflow graphs. Moreover, without
loosing generality we assume that both T S and T E are singletons, i.e., T S = {ts}
and T E = {te}.

We need to define the concept of instance subgraphs before presenting the
correctness criteria for workflow graphs. The right column of Figure 2 shows
which possible paths the execution of the workflow graph in the left column
might take. Choice coordinator C1 can lead a token to the fork T2 or to task
T3. In the latter case the choice coordinator C2 leads to the creation of two
possible paths of workflow instances. Thus, each of these instance subgraphs
represents a subset of workflow tasks that may be executed for a particular
instance of a workflow. They can be generated by visiting a workflow graph’s
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Fig. 3. A correct workflow graph and two incorrect ones exhibiting deadlock and
lack of synchronization

nodes on the semantic basis of underlying modeling structures. The subgraph
representing the visited nodes and flows forms an instance subgraph.

The semantics of a workflow graph are given by the set of instance subgraphs.
Note that instance subgraphs correspond to the concept of runs/occurrence
graphs of Petri nets [17]. The concept of instance subgraphs allows us to de-
fine the following notion of correctness.

Definition 3 (Correctness criteria). A workflow graph is correct if and only
if there are no structural conflicts:

- Correctness criterion 1
Deadlock free workflow graphs: A workflow graph is free of deadlock structural
conflicts if it does not generate an instance subgraph that contains only a
proper subset of the incoming nodes of an and-join node (i.e., synchronizer).

- Correctness criterion 2
Lack of synchronization free workflow graphs: A workflow graph is free of
lack of synchronization structural conflicts if it does not generate an instance
subgraph that contains more than one incoming node of an or-join node (e.g.,
a merge).

It has been mentioned that all split structures introduced after a start task
must be closed through a join structure before reaching the final structure.
Thus, a synchronizer is used for joining fork-split paths and a merge for choice
coordinator-split paths. Figure 3 shows examples for a deadlock error and lack
of synchronization. Joining the choice coordinator C1 with the synchronizer T6
leads to a deadlock. Similarly, joining the multiple paths leaving start task T1
with the merge coordinator C2 introduces a lack of synchronization conflict. It
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means that the merge coordinator results in unintentional multiple activation of
nodes that follow the merge coordinator.

3 An Algorithm and a Counter Example

As mentioned in Section 1, in [19] a set of reduction rules is presented. The
authors claim that, using these rules, a correct workflow graph can be reduced
to an empty workflow graph, whereas an incorrect workflow graph cannot be
reduced to that extent. In [14], a counter example is presented showing that
some correct workflow graphs cannot be reduced to the empty workflow graphs.
This section briefly discusses the set of reduction rules and presents another
counter example.

Overlapped ruleAdjacent ruleClosed ruleSequential rule
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Fig. 4. Reduction rules of [19]

The set of reduction rules as presented in [19] consist of four rules: the sequen-
tial rule, the adjacent rule, the closed rule, and the overlapped rule. [20] claims
that the complexity of applying these four rules is O(n2), where n = |N | + |F |.
– The sequential rule reduces sequential nodes, that is, nodes that have ex-

actly one input node and one output node. A sequential node is reduced by
removing it from the graph and adding an arc from its input node to its
output node.

– The closed rule collapses multiple arcs between nodes of the same type to
a single arc. Note that this rule is slightly out of the ordinary, because in
a workflow graph (which is basically a directed acyclic graph [19]) multiple
arcs cannot exist. Evidently, in a reduced workflow graph multiple arcs are
allowed to exist.

– The adjacent rule reduces adjacent nodes, that is, nodes that have exactly
one input node or one output node, and where the input node or output
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node is of the same type. An adjacent node is reduced by removing it from
the graph and adding arcs connecting all its input nodes to all its output
nodes.

– The overlapped rule reduces a subgraph in between a coordinator and a task,
provided that the coordinator has only tasks as output nodes, the task has
only coordinators as input nodes, every input node of the task is an output
node for every output node of the coordinator, and every output node of
the coordinator is an input node of the task. This subgraph is reduced by
removing all output nodes of the coordinator and all input nodes of the task
from the graph and adding an arc from the coordinator to the task.

C1

T2 T3

C3C2

T4 T5

C5C4

T6 T7

C7C6

T8 T9

C9C8

T1

T10

Fig. 5. Counter Example

Figure 4 visualizes the reduction rules proposed by [19]. The upper row shows
workflow graph constructs before the application of a particular reduction rule.
The lower row displays the results while the columns separate the different rules.

Although [19] claims otherwise, these rules are not complete. Figure 5 shows a
correct workflow graph that cannot be reduced by the rules. This incompleteness
was already signaled in [14], where another counter example is presented. [14]
introduces three additional rules for replacing the overlapped rule, and claims
that using the six remaining rules (i) the set of reduction rules is complete, and
(ii) the complexity is O(n2.m2), where n = |N | + |F | and m = |N |. Whereas
the counter example shown in [14] only needs two of the three replacement rules
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(leaving the third rule a bit as a surprise), our counter example needs all three
replacement rules to reduce the workflow graph to the empty graph.

4 Workflow Nets

The classical Petri net is a directed bipartite graph with two node types called
places and transitions. The nodes are connected via directed arcs. Connections
between two nodes of the same type are not allowed. Places are represented by
circles and transitions by rectangles.

Definition 4 (Petri net). A Petri net is a triple (P, T, F ):

- P is a finite set of places,
- T is a finite set of transitions (P ∩ T = ∅),
- F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation)

A place p is called an input place of a transition t iff there exists a directed
arc from p to t. Place p is called an output place of transition t iff there exists
a directed arc from t to p. We use •t to denote the set of input places for a
transition t. The notations t•, •p and p• have similar meanings, e.g., p• is the
set of transitions sharing p as an input place. Note that we do not consider
multiple arcs from one node to another.

At any time a place contains zero or more tokens, drawn as black dots. The
state, often referred to as marking, is the distribution of tokens over places. We
will represent a state as follows: 1p1 + 2p2 + 1p3 + 0p4 is the state with one
token in place p1, two tokens in p2, one token in p3 and no tokens in p4. We can
also represent this state as follows: p1 + 2p2 + p3. A Petri net PN and its initial
marking M are denoted by (PN , M)

The number of tokens may change during the execution of the net. Transi-
tions are the active components in a Petri net: they change the state of the net
according to the following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least
one token.

(2) An enabled transition may fire. If transition t fires, then t consumes one
token from each input place p of t and produces one token for each output
place p of t.

The firing rule specifies how a Petri net can move from one state to the next
one. If at any time multiple transitions are enabled, a non-deterministic choice
is made. A firing sequence σ = t1t2 . . . tn is enabled if, starting from the initial
marking, it is possible to subsequently fire t1, t2, . . . tn. A marking M is reachable
from the initial marking if there exists a enabled firing sequence resulting in M .
Using these notions we define some standard properties for Petri nets.

Definition 5 (Live). A Petri net (PN , M) is live iff, for every reachable
state M ′ and every transition t there is a state M ′′ reachable from M ′ which
enables t.
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Definition 6 (Bounded, safe). A Petri net (PN , M) is bounded iff for each
place p there is a natural number n such that for every reachable state the number
of tokens in p is less than n. The net is safe iff for each place the maximum
number of tokens does not exceed 1.

Definition 7 (Strongly connected). A Petri net is strongly connected iff, for
every pair of nodes (i.e., places and transitions) x and y, there is a path leading
from x to y.

Free-choice nets from an important subclass of Petri nets for which strong theo-
retical results exist. In a free-choice net choice and synchronization are separated.

Definition 8 (Free-choice). A Petri net is a free-choice Petri net iff, for every
two transitions t1 and t2, •t1 ∩ •t2 �= ∅ implies •t1 = •t2.
A Petri net which models the control-flow dimension of a workflow, is called a
WorkFlow net (WF-net). It should be noted that a WF-net specifies the dynamic
behavior of a single case in isolation.

Definition 9 (WF-net). A Petri net PN = (P, T, F ) is a WF-net (Workflow
net) if and only if:

(i) There is one source place i ∈ P such that •i = ∅.
(ii) There is one sink place o ∈ P such that o• = ∅.

(iii) Every node x ∈ P ∪ T is on a path from i to o.

A WF-net has one input place (i) and one output place (o) because any case
handled by the procedure represented by the WF-net is created when it enters
the workflow management system and is deleted once it is completely handled
by the workflow management system, i.e., the WF-net specifies the life-cycle of
a case. The third requirement in Definition 9 has been added to avoid ‘dangling
tasks and/or conditions’, i.e., tasks and conditions which do not contribute to
the processing of cases.

The three requirements stated in Definition 9 can be verified statically, i.e.,
they only relate to the structure of the Petri net. However, there is another
requirement which should be satisfied:

For any case, the procedure will terminate eventually and the moment
the procedure terminates there is a token in place o and all the other
places are empty.

Moreover, there should be no dead tasks, i.e., it should be possible to execute
an arbitrary task by following the appropriate route though the WF-net. These
two additional requirements correspond to the so-called soundness property.

Definition 10 (Sound). A procedure modeled by a WF-net PN = (P, T, F ) is
sound if and only if:

(i) For every state M reachable from state i, there exists a firing sequence
leading from state M to state o.
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(ii) State o is the only state reachable from state i with at least one token in
place o.

(iii) There are no dead transitions in (PN , i).

Note that the soundness property relates to the dynamics of a WF-net. The first
requirement in Definition 10 states that starting from the initial state (state i),
it is always possible to reach the state with one token in place o (state o). If we
assume a strong notion of fairness, then the first requirement implies that even-
tually state o is reached. Strong fairness means in every infinite firing sequence,
each transition fires infinitely often. The fairness assumption is reasonable in the
context of workflow management: All choices are made (implicitly or explicitly)
by applications, humans or external actors. Clearly, they should not introduce
an infinite loop. Note that the traditional notions of fairness (i.e., weaker forms
of fairness with just local conditions, e.g., if a transition is enabled infinitely
often, it will fire eventually) are not sufficient. See [2,11] for more details. The
second requirement states that the moment a token is put in place o, all the
other places should be empty. The third requirement rules out dead parts.

Given a WF-net PN = (P, T, F ), we want to decide whether PN is sound.
In [1] we have shown that soundness corresponds to liveness and boundedness.
To link soundness to liveness and boundedness, we define an extended net PN =
(P , T , F ). PN is the Petri net obtained by adding an extra transition t∗ which
connects o and i. The extended Petri net PN = (P , T , F ) is defined as follows:
P = P , T = T ∪ {t∗}, and F = F ∪ {〈o, t∗〉, 〈t∗, i〉}. In the remainder we will
call such an extended net the short-circuited net of PN . The short-circuited net
allows for the formulation of the following theorem. Note that PN is strongly
connected.

Theorem 1. A WF-net PN is sound if and only if (PN , i) is live and bounded.

Proof. See [1]. ��
This theorem shows that standard Petri-net-based analysis techniques can be
used to verify soundness.

For a complex WF-net it may be intractable to decide soundness. (For ar-
bitrary WF-nets liveness and boundedness are decidable but also EXPSPACE-
hard, cf. Cheng, Esparza and Palsberg [5].)

Free-choice Petri nets have been studied extensively (cf. Best [3], Desel and
Esparza [6], Hack [8]) because they seem to be a good compromise between
expressive power and analyzability (cf. Definition 8). It is a class of Petri nets
for which strong theoretical results and efficient analysis techniques exist. For
example, the well-known Rank Theorem (Desel and Esparza [6]) enables us to
formulate the following corollary.

Corollary 1. The following problem can be solved in polynomial time.
Given a free-choice WF-net, to decide if it is sound.

Proof. Let PN be a free-choice WF-net. The short-circuited net PN is also free-
choice. Therefore, the problem of deciding whether (PN , i) is live and bounded
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can be solved in polynomial time (Rank Theorem [6]). By Theorem 1, this cor-
responds to soundness. ��
Corollary 1 shows that, for free-choice nets, there are efficient algorithms to
decide soundness.

5 Mapping Workflow Graphs onto WF-Nets

In this section we introduce an approach that maps workflow graphs onto WF-
nets. This way Petri-net-based analysis techniques can be used to verify work-
flow graphs. Figure 6 visualizes the algorithm for mapping workflow graphs to
Petri nets. Tasks are mapped onto transitions and choice/merge coordinators
are mapped onto places. In row a) of Figure 6 the easiest case of mapping a
workflow net to a Petri net can be seen. Whenever a task is directly followed
by a choice/merge coordinator then no mapping adjustments are required. In
Row b) a place has to be put between two directly connected tasks. It is marked
with p and the task labels in brackets.

C2C1

T1 C1

T1 T2

C1 T1

T1 T2

T1 C1

C2C1

C1 T1

p(T1,T2)

t(C1,C2)

p(C1,T1)t(C1,T1)

Workflow Graph Petri-net

a)

b)

c)

d)

Fig. 6. Mapping workflow graphs to Petri nets

If two choice/merge coordinators are connected to each other as in row c) of
Figure 6 then a transition must be put between the corresponding places. The
place labels refer to the names of both coordinators. Row d) of the workflow
graph column shows a coordinator connected to a task. In order to achieve Petri
net mapping, an additional transition and place have to be added. Since the
choice is made in the coordinator, a silent transition needs to be introduced.
The following definition formatices the mapping of workflow graphs onto Petri
nets.

Definition 11 (Petrify). Let WG = (N, T, T S, T E, C, F ) be a consistent work-
flow graph with a unique source and sink node. The function petrify maps a
workflow graph onto a Petri net PN = (P ′, T ′, F ′) where:
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- P ′ = C ∪ {i, o} ∪ {p(x,y) Fy wedge ∈ T },
- T ′ = T ∪ {t(x,y) Fy wedge ∈ C},
- F ′ = {(i, t) ∈ T S} cup {(t, o) ∈ T E} cup {(t, c) Fc wedge ∈ T wedge ∈

C} cup⋃{{(c, t(c,t)), (t(c,t), p(c,t)), (p(c,t), t)} Ft wedge ∈ C wedge ∈ T } cup⋃{{(c, t(c,c′)), (t(c,c′), c
′)} Fc′ wedge ∈ C wedge ′ ∈ C} cup⋃{{(t, p(t,t′)), (p(t,t′), t
′)} Ft′ wedge ∈ T wedge ′ ∈ T }

Function petrify results in a Petri net satisfying a number of properties as men-
tioned by the following theorem.

Theorem 2. Let WG be a consistent workflow graph and petrify(WG) = PN .

- PN is a WF-net,
- PN is free-choice,
- PN is sound if and only if WG has no structural conflicts.

Proof. It is easy to show that PN is a WF-net. There is one source place i
and one sink place o. These places are explicitly added by the function petrify .
Moreover, every node is on a path from i to o since in the corresponding workflow
graph all nodes are on a path from start to end and all connections are preserved
by the mapping given in Definition 11.

To show that PN is free-choice, we consider all places with multiple output
arcs. These places all correspond to choice/merge coordinators. All additional
places added by function petrify have only output arc (except o which has none).
All outgoing arcs of a choice/merge coordinators are mapped onto a transition
with only one input place. Therefore, PN is free-choice.

Consider definitions 3 and 10. Clearly, the two requirements stated in Def-
inition 3 correspond to the first two requirements of Definition 10. Remains to
prove that the absence of structural conflicts in WG implies that there are no
dead transitions in PN . This is a direct result of Proposition 13 in [1] which
demonstrates that for free-choice nets the first two requirements imply the third
one. ��

Corollary 2. The following problem can be solved in polynomial time.
Given a consistent workflow graph, to decide if it is correct.

Proof. For free-choice WF-nets, soundness can be checked in polynomial time
(Corollary 1). The mapping given in Definition 11 can also be done in polynomial
time. Therefore, correctness of a consistent workflow graph can be verified in
polynomial time. ��

The complexity of the algorithm presented by Sadiq and Orlowska is O(n2)
where n = |N | + |F | [20]. However, this algorithm does not reduce all workflow
graphs without structural conflicts as indicated in Section 3. Lin, Zhao, Li, and
Chen [14] claim to have solved this problem. The complexity of the algorithm
presented in [14] is O(n2.m2) where n = |N | + |F | and m = |N |.
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Fig. 7. Three WF-nets corresponding to the three workflow graphs shown in
Figure 3

In [10] an algorithm is given which decides whether a strongly-connected
free-choice net is live and bounded. The complexity of this algorithm is O(p2.t)
where p is the number of places and t the number of transitions. This algorithm
is an improvement of the approach based on the Rank theorem and uses state-
machine decomposability by computing a sufficient set of minimal deadlocks to
cover the net. This result can be used to analyze workflow graphs efficiently as
indicated by the following theorem.

Theorem 3. Let WG = (N, T, T S, T E, C, F ) be a consistent workflow graph.
An upper bound for the complexity of checking whether WG has no structural
conflicts through the construction of the corresponding WF-net and verifying
whether the short-circuited net is live and bounded is O(k2.l) where k = |C|+ |F |
and l = |T | + |F |.
Proof. petrify(WG) = PN = (P ′, T ′, F ′). The number of places in the short-
circuited net is |P ′| < |C| + 2 + |F |. The number of transitions is |T ′| < |T | +
|F | + 1. The complexity of the algorithm presented in [10] is O(p2.t) where p is
the number of places and t the number of transitions. Hence, deciding whether
PN is sound has a complexity of O(k2.l) where k = |C| + |F | and l = |T |+ |F |.



548 W. M. P. van der Aalst et al.

The complexity of transforming WG into PN is smaller. Therefore, the overall
complexity is O(k2.l). ��
This result shows that our approach is at least as good as the algorithm presented
in [14]. The complexity of the algorithm presented in [14] is O(n2.m2) where
n = |N |+ |F | and m = |N |. If we assume that the number of arcs in a workflow
graph (i.e., |F |) is of the same order of magnitude as the number of nodes (i.e.,
|N |), then the complexity of the algorithm presented in [14] is O(n2.m2) = O(x4)
and the complexity of the algorithm presented in this paper is O(k2.l) = O(x3)
where x = |N |. If we assume that the number of arcs is quadratic in terms of
the number of nodes, then the complexity of the algorithm presented in [14] is
O(n2.m2) = O(x6) and the complexity of the algorithm presented in this paper
is O(k2.l) = O(x6) where x = |N |. This means that only in a worst-case scenario
where the graph is dense, the complexities of both algorithms are comparable.
If the graph is not dense, the complexity of our algorithm is significantly better.

6 Diagnostics and Petri-Net-Based Reduction Rules

Theorem 3 shows that Petri-net can be used to analyze workflow graphs effi-
ciently. However, one of the features of the reduction rules given in [14,19,20] is
the fact that useful error diagnostics are given in the form of an irreducible graph.
In this section, we briefly discuss the diagnostics provided by our Petri-net-based
verification tool Woflan. Moreover, we also provide pointers to Petri-net-based
reduction rules. These reduction rules are more powerful than the rules given
in [14,19,20].

Woflan (WOrkFLow ANalyzer) has been designed to verify process defini-
tions which are downloaded from a workflow management system [21]. At the
moment there are several workflow tools that can interface with Woflan, among
which Staffware (Staffware plc., Berkshire, UK) and COSA (COSA Solutions/
Software-Ley, Pullheim, Germany) are the most prominent ones. The BPR tool
Protos (Pallas Athena, Plasmolen, The Netherlands) can also interface with
Woflan. If the workflow process definition is not sound, Woflan guides the user
in finding and correcting the error. Since a detailed description of the functional-
ity of Woflan is beyond the scope of this paper, we will use the example WF-nets
shown in Figure 7 and the WF-net shown in Figure 8, which corresponds to the
counter example shown in Figure 5, to illustrate the features of Woflan. For the
Deadlock WF-net, Woflan gives the following diagnostics:

– The net is a WF-net, but is not coverable by so called S-components [6].
Because we know that the WF-net is (by construction) free-choice, we deduce
(see [21]) that the WF-net is not sound, and thus that the corresponding
workflow graph (see Figure 3) is not correct.

– Woflan points out the fact that a PT-handle exists in the WF-net: Starting
from place C1 there exist two mutual disjoint paths to transition T6. This
clearly indicates the source of the error.

The Lack of Synchronization WF-net is diagnosed by Woflan as follows:
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– This net is also a WF-net, and like the Deadlock WF-net, it cannot be
covered by S-component. Hence, this WF-net is also not sound.

– In this net, a TP-handle exists: Starting from transition T1 there exists
mutual disjoint paths to the place C2. Once more, this clearly indicates the
source of the error.

Finally, both the correct WF-net shown in Figure 7 and the WF-net shown in
Figure 8 are diagnosed as follows:

– These nets are WF-nets, and they can be covered by S-components. As a
result, no unbounded places exist and these WF-nets can still be sound.

– All transitions are live, hence the WF-nets are sound.

Note that the WF-net shown in Figure 8 corresponds to the workflow graph
shown in Figure 5, i.e., the counter example. This graph can not be reduced by
the technique presented in [19,20]. However, it can be analyzed by Woflan.

C1

T2 T3

C3C2

T10

T4 T5

C5C4

T6 T7

C7C6

T8 T9

C8

i

o

T1

C9

Fig. 8. Counter example mapped to workflow net

Woflan also supports a set of reduction rules. Before the analysis of sound-
ness starts, the reduction rules presented in [15] can be used to reduce the
size of the WF-net. These rules have be added to improve the analysis of large
models. Note that the set of rules described in [15] is not complete. Therefore,
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there are sound WF-nets that cannot be reduced to the “empty net”. However,
for live and bounded free-choice net there is a complete set of reductions rules
{φA, φS , φT }, cf. citedeselesparza. Rule φA is an abstraction rule which replaces
place/transition pairs by arcs. Rules φS and φT are linear dependency rules
which remove redundant places respectively transitions. As is shown in [6] these
rules can be used to reduce any live and bounded free-choice net into a net
consisting of one place and one transition. This means that the short-circuited
Petri-net representation of any correct workflow graph can be reduced into a
net PN = ({p}, {t}, {〈p, t〉, 〈t, p〉}) in polynomial time. If the workflow graph
is not correct, the reduction will stop before reaching the net consisting of one
place and one transition. This will provide similar diagnostics as in [14,19,20].
However, (1) only three reduction rules are needed (instead of seven), (2) the
reduction applies to a larger class of workflow processes (e.g., having loops), and
(3) the rules are more compact and their correctness can be verified using stan-
dard Petri-net theory. Currently we are investigating if we can map the seven
rules of [14] onto {φA, φS , φT }.

7 Conclusion

In this paper, we presented an alternative analysis technique for the verification
of workflow graphs as introduced by Wasim Sadiq and Maria Orlowska [19,20].
We presented a counter example showing that the reduction rules given in [19,20]
cannot be applied. Moreover, we provided an alternative approach for identifying
structural conflicts with an algorithm who’s complexity is O(k2.l) where k =
|C|+ |F | and l = |T |+ |F |. This algorithm outperforms the algorithm presented
in [14] if the workflow graph is not dense. This is remarkable since the techniques
presented in [19,20,14] are tailored towards workflow graphs while our approach
is based on standard Petri-net-based techniques.

Within a complexity range that is at least as good as the approach presented
in [14], the algorithm in this paper can handle workflow graphs with cycles and
more advanced synchronization constructs (as long as they correspond to free-
choice nets). The mapping presented in this paper, allows for the verification
using our analysis tool Woflan. Woflan provides high-quality diagnostics in case
of an error and allows for a smooth transition to more expressive models, e.g.,
workflow languages having non-free choice constructs.
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